## Shear of closed section thin-walled beams - Example

$$
q_{s}=-\frac{S_{y}}{I_{x x}} \int_{0}^{s} t y \mathrm{~d} s+q_{s, 0}
$$

## Shear of closed section thin-walled beams - Example



$$
q_{\mathrm{b}, 41}=\frac{-S_{y}}{1152 a^{3} t} \int_{0}^{s_{1}} t\left(\frac{8}{10} s_{1}\right) \mathrm{d} s_{1}=\frac{-S_{y}}{1152 a^{3}}\left(\frac{2}{5} s_{1}^{2}\right)
$$

$$
\begin{aligned}
q_{\mathrm{b}, 12} & =\frac{-S_{y}}{1152 a^{3}}\left[\int_{0}^{s_{2}}\left(17 a-s_{2}\right) \frac{8}{17} \mathrm{~d} s_{2}+40 a^{2}\right] \\
q_{\mathrm{b}, 12} & =\frac{-S_{y}}{1152 a^{3}}\left(-\frac{4}{17} s_{2}^{2}+8 a s_{2}+40 a^{2}\right)
\end{aligned}
$$

## Shear of closed section thin-walled beams - Example



Taking moment w.r.t. to point 2:

$$
q_{s, 0}=\frac{2 S_{y}}{54 a \times 1152 a^{3}}\left[\int_{0}^{10 a} \frac{2}{5} s_{1}^{2} \mathrm{~d} s_{1}+\int_{0}^{17 a}\left(-\frac{4}{17} s_{2}^{2}+8 a s_{2}+40 a^{2}\right) d s_{2}\right]
$$

$$
q_{s, 0}=\frac{S_{y}}{1152 a^{3}}\left(58.7 a^{2}\right)
$$

$$
S_{y}\left(\xi_{\mathrm{S}}+9 a\right)=2 \int_{0}^{10 a} q_{41} 17 a \sin \theta \mathrm{~d} s_{1}
$$

$$
S_{y}\left(\xi_{\mathrm{S}}+9 a\right)=\frac{S_{y} 34 a \sin \theta}{1152 a^{3}} \int_{0}^{10 a}\left(-\frac{2}{5} s_{1}^{2}+58.7 a^{2}\right) \mathrm{d} s_{1}
$$

$$
\sqrt{6}
$$

$$
\xi_{\mathrm{S}}=-3.35 a
$$

## Thin-walled beams - torsion

## open section vs closed section

## Torsion of closed section thin-walled beams

Assumptions:


$$
d T=q d s \cdot p \quad \Longrightarrow T=\oint p q \mathrm{~d} s
$$

$$
T=2 A q
$$

Bredt-Batho formula

## Torsion of closed section thin-walled beams



$$
\frac{\mathrm{d} \theta}{\mathrm{~d} z}=\frac{T}{4 A^{2}} \oint \frac{\mathrm{~d} s}{G t}
$$

Torsion of single-cell closed TW section.

## Torsion of open section thin-walled beams



## Thin-walled beams - constrained torsion

St. Venant vs Wagner torsion-bending

## Constrained torsion of thin-walled beams



- I-beam with constant torque
- Positive moment, but negative top flange displacement $u$

$$
\begin{aligned}
& \text { angle of twist } \\
& \text { rate of twist } \\
& \rightarrow \\
& \rightarrow d \theta / d z=\boldsymbol{\theta}^{\prime}
\end{aligned}
$$

## Constrained torsion of thin-walled beams


(b) Uniform torque gives rise to only shear stresses. Warping stresses are zero and every cross-section warps by the same amount. This is Saint Venant torsion.
 on left hand end


Warping stresses on left hand end

## Constrained torsion of thin-walled beams



Flange BENDING $\mathrm{u}=\mathrm{u}(\mathrm{z})$
Rate of twist $d \theta / d z=\theta^{\prime}$ is NOT constant twist is nonlinear

## Constrained torsion of thin-walled beams

 FREE S-V torsion stiffness

$$
\begin{gathered}
T_{J}=G J_{s} \frac{d \theta}{d z}=C_{T} \frac{d \theta}{d z}=C_{T} \theta^{\prime} \\
J_{s}=\frac{1}{3} \sum s_{i} t_{i}^{3}
\end{gathered}
$$

$G J_{s}=C_{T} \Rightarrow \quad S-V$ torsional stiffness

## Constrained torsion of thin-walled beams

Stiffness of bending of flanges


## Flange BENDING Vlasov theory (Wagner effect)

Transverse bending (shear force $S_{F}$ exists), bending moment is variable (is a function)

$$
M_{y}=-E I_{y y} u^{\prime \prime}
$$

$$
M_{F}=-E I_{F} \frac{d^{2} u}{d z^{2}}
$$

## Constrained torsion of thin-walled beams

Stiffness of bending of flanges
Transverse bending (shear force $S_{F}$ exists), bending moment is variable (is a function of $z$ )

$$
u=\frac{h}{2} \theta
$$

$$
M_{F}=-E I_{F} \frac{d^{2} u}{d z^{2}}
$$

$$
S_{F}=\frac{d M_{F}}{d z}=-E I_{F} \frac{d^{3} u}{d z^{3}}
$$

## Constrained torsion of thin-walled beams

Stiffness of bending of flanges
Transverse bending (shear force $S_{F}$ exists), bending moment is variable (is a function of $z$ )

$$
u=\frac{h}{2} \theta \text { so } \frac{d^{3} u}{d z^{3}}=\frac{h}{2} \frac{d^{3} \theta}{d z^{3}}
$$

$$
T_{\Gamma}=S_{F} h=-E I_{F} \frac{h}{2} \frac{d^{3} \theta}{d z^{3}} \square h \quad I_{F}=\frac{t_{f} b^{3}}{12}
$$

## Constrained torsion of thin-walled beams

Combining two mechanisms ...
Total torque is transmitted thru sum of both:


$$
\begin{gathered}
T_{J}=G J_{s} \frac{d \theta}{d z}=C_{T} \frac{d \theta}{d z} \\
T_{\Gamma}=-E I_{F} \frac{h^{2}}{2} \frac{d \theta^{3}}{d z^{3}} \\
T=T_{J}+T_{\Gamma}
\end{gathered}
$$

## Constrained torsion of thin-walled beams

Combining two mechanisms ...

$$
\begin{gathered}
T=T_{J}+T_{\Gamma}=G J_{s} \frac{d \theta}{d z}-E I_{F} \frac{h^{2}}{2} \frac{d \theta^{3}}{d z^{3}} \\
T=T_{J}+T_{\Gamma}=C_{T} \frac{d \theta}{d z}-C_{\omega} \frac{d \theta^{3}}{d z^{3}} \\
C_{\omega}=E I_{\omega} \quad \text { where } I_{\omega}=\frac{b^{3} h^{2} t_{F}}{24}\left[m^{6}\right] \\
\text { or }: C_{\omega}=E \Gamma_{R} \text { where } \Gamma_{R}=\int_{C} 4 A_{R}^{2} t d s \quad \text { torsion-bending constant }
\end{gathered}
$$

## Constrained torsion of thin-walled beams

$$
T=T_{J}+T_{\Gamma}=C_{T} \frac{d \theta}{d z}-C_{\omega} \frac{d \theta^{3}}{d z^{3}}
$$

ODE to be solved + necessary BC In general, $\mathrm{T}=\mathrm{T}(\mathrm{z})$ may vary along TWB

For $\mathrm{T}=$ const the solution is:

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} z}=\frac{T}{G J}+A \cosh \mu z+B \sinh \mu z \quad \quad \mu^{2}=G J / E \Gamma_{\mathrm{R}}
$$

## Constrained torsion of thin-walled beams

The BC are:

- at built-in end $(z=0) \quad \mathrm{d} \theta / \mathrm{d} z=0$
- at free end $(z=L) \quad d^{2} \theta / d z^{2}=0$

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} z}=\frac{T}{G J}\left[1-\frac{\cosh \mu(L-z)}{\cosh \mu L}\right]
$$

$\mu^{2}=G J / E \Gamma_{\mathrm{R}}$

## Constrained torsion of thin-walled beams



## Constrained torsion of thin-walled beams

$$
\mu^{2}=G J / E \Gamma_{\mathrm{R}}
$$

for $\mu \mathrm{L}<0.5$ short TWB for $\mu \mathrm{L}>5$ long TWB


## Constrained torsion of thin-walled beams

$$
\mu^{2}=G J / E \Gamma_{\mathrm{R}}
$$



for $\mu \mathrm{L}<0.5$ short TWB for $\mu \mathrm{L}>5$ long TWB

## Constrained torsion of thin-walled beams

$$
\mu^{2}=G J / E \Gamma_{\mathrm{R}}
$$


for $\mu \mathrm{L}<0.5$ short TWB for $\mu \mathrm{L}>5$ long TWB

## Constrained torsion of thin-walled beams



- L


Przy dowolnych wymiarach, grubości, liczbie i ustawieniu ścianek plaskich zawsze

## Constrained torsion of thin-walled beams



