6.2. DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ

6.2.1. Wprowadzenie

Zadanie dwuwymiarowe teorii sprężystości jest szczególnym przypadkiem zadania trójwymiarowego, kiedy to problem można rozwiązać analizując reprezentatywny płaski obszar sprężysty, na którego brzegu znane są warunki przemieszczeniowe lub obciążenia, a wewnątrz obszaru działają siły objętościowe. W szczególnych, prostych przypadkach znane są analityczne rozwiązania tego typu zadań. Typowymi zadaniami dwuwymiarowymi teorii sprężystości są przypadki:

- cienkich tarcz o dowolnym kształcie pracujących w stanie błonowym (płaski stan naprężenia *PSN* – ang. Plane stress)
- brył pryzmatycznych, w których można przyjąć brak swobody odkształceń w kierunku normalnym do płaszczyzny analizowanego przekroju (płaski stan odkształcenia *PSO – ang. Plane strain*)
- brył obrotowych obciążonych osiowosymetrycznie (osiowa symetria **OS** ang. Axisymmetry)

Z punktu widzenia MES wszystkie te zadania można rozwiązać dokonując dyskretyzacji płaskiego obszaru odpowiadającego reprezentatywnemu przekrojowi analizowanego obiektu. Należy przy tym pamiętać, że użyte elementy skończone muszą korzystać z odpowiednich postaci prawa Hooke'a właściwych dla każdego z wcześniej wymienionych typów (odpowiednie opcje elementu: *Plane stress, Plain strain, Axisymmetry*).

6.2.2. Rozwiązywane zagadnienie

<u>Celem</u> ćwiczenia jest analiza MES naprężeń i odkształceń powstałych w cienkiej tarczy duralowej obciążonej stałym rozkładem naprężeń rozciągających o wypadkowej P. Uzyskane numerycznie współczynniki koncentracji naprężeń w dnie karbów należy porównać z wartościami podanymi w literaturze.

Dane:

b=500mm, *h*=800mm, *δ*=2mm (grubość), *r*₁=25mm, *r*₂=50mm, *a*=60mm, *E*=7·10⁴ MPa, *v*=0.32 *P*=20kN

W zadaniu należy porównać wyniki uzyskane dla różnych gęstości siatek (wpływ dyskretyzacji) i różnych typów elementów skończonych (wpływ aproksymacji wewnątrz elementu – funkcji kształtu).

Rys.6.2.1. Model tarczy z karbami

6.2.3. TYPOWY PRZEBIEG ANALIZY NUMERYCZNEJ

Biorąc pod uwagę symetrię tarczy (kształtu i obciążenia) do obliczeń można przyjąć jedynie połowę analizowanego obiektu. Wygodnymi jednostkami są: mm, N, MPa.

6.2.3.1. Preprocessor

<u>Budowa modelu geometrycznego</u> (*solid model*) zostanie przeprowadzona techniką *Up_bottom*, tzn. wykorzystane zostaną tzw. prymitywy:

a) Utwórz prostokąt o wymiarach 500 na 800/2 mm:

Rys. 6.2.2. Ustalenie wymiarów prostokąta

b) Ustaw krok=5mm dla WorkPlane i przesuń Workplane o dwa kroki w prawo:

<u>File Select List Plot PlotCtrls</u>	WorkPlane Parameters Ma	WP Settings	
••••••	Display Working Plane	Cartesian	WorkPlane Parameters Macro MonuCtric Holp
Toolbar	Show WP Status	C Polar	Display Working Plane
SAVE DB RESUM DB QUIT F	WP Settings	C Grid and Triad	WP Status
Main Manu	Offset WP by Increments	C Grid Only	
Preferences	Alian WP with	Triad Only	
Preprocessor	Change Astive CS to	🔽 Enable Snap	Align WP with
■ Element Type ■ Real Constants	Change Display CS to	Snap Incr 5	Change Active CS to
		\sim	

Rys. 6.2.3. Ustalenie kroku dla WorkPlane

Rys. 6.2.4. Przesunięcie WorkPlane o dwa kroki w prawo

c) Utwórz półkole o promieniu \mathbf{r}_2 =50mm w miejscu WorkPlane:

Main Menu	
Preprocessor	
Real Constants	
Material Props	
Sections	
Modeling	
Create	Circular Area by Dimensions
Keypoints	PCIRCI Circular Area by Dimensions
	RADI Outer radius
□ Areas	
Arbitrary	RAD2 Optional inner radius
Rectangle	THETA1 Starting angle (degrees)
> Solid Circle	THETA2 Ending angle (degrees) 180
Annulus	
Partial Annulus	OK Apply Cancel Help
A By End Points	
By Dimensions	
Polygon	
Area Fillet	YW
voiumes	WZ WX
Nodes	

Rys. 6.2.5. Utworzenie półkola o promieniu \mathbf{r}_2

d) Przesuń WorkPlane o dziewięć kroków w lewo:

$\underline{F}ile \underline{S}elect \underline{L}ist \underline{P}lot Plot\underline{C}trls$	WorkPlane Parameters	Macro Offset WP
D & B Ø 5 & ? E	 Display Working Plane 	X- +X
ANSYS Toolbar	Show WP Status WP Settings	<u>Y-</u> +Y
SAVE_DB RESUM_DB QUIT	Offset WR by Incremen	z- +Z
Main Menu	Offset WP to	
Preferences	Align WP with	• Snaps

Rys. 6.2.6. Przeniesienie WorkPlane o dziewięć kroków w lewo

e) Utwórz półkole o promieniu r_1 =25mm w miejscu WorkPlane:

Modeling	
Create	
Keypoints	Circular Area by Dimensions
Lines	[PCIRC] Circular Area by Dimensions
Areas	RAD1 Outer radius 25
Arbitrary	
Rectangle	RAD2 Optional inner radius
Circle	THETA1 Starting angle (degrees)
Solid Circle	
	THETAZ Ending angle (degrees)
Partial Annulus	
By Dimensions	
Polygon	
Volumes	
T Nodec	

Rys. 6.2.7. Utworzenie półkola o promieniu r₁

f) Pokaż linie modelu:

<u>F</u> ile	<u>S</u> elect	<u>L</u> ist	<u>P</u> lot	Plot <u>C</u> trls	<u>W</u> orkPlar
0 🖻		8 4	Re	plot	
Tool	bar		Ke	ypoints	+
SAV		RESU	Lin	es	
0/11			Are	26	

Rys. 6.2.8. Wskazanie polecenia rysowania linii

g) Wykonaj powiększenie okolicy półkoli i utwórz linię styczną do obu okręgów:

Preprocessor Element Type Real Constants Material Props Sociars	At Angle to 2 Lines		
	- Conpick		
	€ Single C Box		
Keypoints	C Polygon C Circle		
= Lines	C Loop		
□ Lines	Count = 0		
	Maximum = 2		\
>> In Active Coord	Minimum = 2	WY Y	
	Line No. =	WZ WX Z X	
	(List of items	Straight Line at Angle to 2 Lines	
	🔿 Min, Max, Inc	[L2ANG] Create a Straight Line at Angles to 2 Existing Lines	
		NI 1 NI 2 Existing lines	۰ ۲
At angle to line	P	HELPHER EXISTING	
Angle to 2 Lines		ANG1,ANG2 Angles in degrees	
I Arcs	OK Apply	PHIT1, PHIT2 Numbers to assign -	
Splines	Reset Cancel		
➢ Line Fillet		- to new keypoints at hit locations	
Areas	Pick All Help		Cancel Help -
Volumes			Help

Rys. 6.2.9. Utworzenie linii stycznej do okręgów

h) Utwórz pole wykroju w tarczy przez wskazanie punktów:

Rys. 6.2.10. Utworzenie pola wykroju w tarczy

i) Usuń pola obu półkoli (wraz z ich liniami i punktami geometrii):

Rys. 6.2.11. Usunięcie niepotrzebnych półkoli

j) Odejmij od dużego prostokąta uzyskaną w punkcie h) figurę:

Rys. 6.2.12. Odjęcie od prostokąta zbudowanego w punkcie a) figury utworzonej w punkcie h)

<u>Wybór typu elementu skończonego</u> (element 8-węzłowy: PLANE183 lub element 4-węzłowy: PLANE182) i jego odpowiedniego wariantu (*Plane stress*):

Rys. 6.2.14. Ustalenie opcji elementu

Wprowadzenie danych materiałowych – modułu Younga (EX) i stałej Poissona (PRXY):

Preprocessor		
Element Type	Define Material Model Behavior	_ 🗆 🗙
Real Constant	ts Material Edit Favorite Help	
Material Prop	SMaterial Models Defined Material Models Available	
Material Lik	brary	
Temperatu	re Units	
Electromag	j Unite	
🖉 🖾 Material Mo	odels 🖉 Linear	
Convert Al		
Change Mal	Linear Isotropic Properties for Material Number 1	
■ Failure Cri	Anisotropic	
Write to Fi	Linear Isotropic Material Properties for Material Number 1	
Read from	Density	
Sections	T1 Thermal Expansion	_
Modeling	Temperatures	
Meshing		
Checking Ctr	EX (//e5	
Numbering C	PRXY .32	
Archive Mod		
Coupling / Ce	Add Temperature Delete Temperature Graph	
FLOTRAN Se		
Multi-field Se	OK Cancel Help	
ehco I ⊞		

Rys. 6.2.15. Wprowadzenie danych materiałowych

Określenie gęstości dyskretyzacji:

W przykładzie definiujemy gęstości podziału na kolejnych liniach zewnętrznych analizowanego obszaru. Sterowanie kierunkiem zagęszczania podziału linii odbywa się za pomocą parametru *SPACE:*

Main Menu	®	
Preferences	MeshTool	Kellement Sizes on Picked Lines
Preprocessor	Element Attributes:	[LESIZE] Element sizes on picked lines
Element Type		SIZE Element edge length
Real Constants	Global 💌 Set	NDIV No. of element divisions
Material Props		Element Size on Picked Li
Sections	Smart Size	Pick C Unpick (NDIV is used only if SIZE is blank or zero)
Modeling		KYNDIV SIZE,NDIV can be changed IV Yes
Meshing	Fine 6 Coarse	Sangle (Box SPACE Spacing ratio
Mesh Attribute		C Polygon C Circle
🖩 MeshTool	Size Controls:	ANGSLZ Division arc (degrees)
Size Cntrls	Global Set Clear	Count = 1 (use ANGSIZ only if number of divisions (NDIV) and
Mesher Opts		Maximum = 9 element edge length (SIZE) are blank or zero)
Concatenate	Areas Set Clear	Minimum = 1 Clear attached areas and volumes
⊡ Mesh	Lines Set Clear	Line No. = 8
Modify Mesh		List of Items
Check Mesh	Hip	
Clear Charles	Lever Set Clear	OK Apply Cancel Help
Cnecking Ctris Numbering Ctris	Luyer	
Numbering Ctris Archive Medel	Keypts Set Clear	
Archive Model Coupling / Coop		
Multi-field Set Up		
	Mesh: Areas	Reset Cancel
Physics	Shape: 🔿 Tri 🔎 Quad	Pick All Help / Z_X
Path Operations		

Rys. 6.2.16. Ustalanie parametrów sterowania gęstością siatki elementów dla przykładowej linii <u>Podział na elementy skończone</u> (np. *free meshing*).

Rys. 6.2.17. Siatka elementów skończonych w obszarze tarczy

6.2.3.2. Solution – moduł rozwiązujący

a) warunek symetrii na linii łączącej dna karbów (odebranie swobody przemieszczeń w kierunku y),

Rys. 6.2.18. Określenie warunków symetrii na liniach

b) dodatkowo trzeba odebrać możliwość przemieszczenia w kierunku x dowolnie wybranego węzła (można wprowadzić ten warunek bezpośrednio w węzeł lub punkt geometrii).

Rys. 6.2.19. Odebranie swobody przemieszczenia w kierunku X wybranego punktu geometrii

<u>Wprowadzenie obciążenia</u> w postaci ciśnienia na linii ED: p = -20000/500/2 MPa:

Solution Analysis Type Define Loads Settings Apply Structural	PRES -20 Apply PRES on Lines © Pick © Unpick	Apply PRES on lines S Constant value C
Displacement Force/Moment	© Single C Box C Polygon C Circle C Loop	If Constant value then: VALUE Load PRES value -20
Pressure P On Lines P On Areas P On Nodes P On Node Components	Count = 1 Maximum = 9 Minimum = 1 Line No. = 3	If Constant value then: Optional PRES values at end J of line (leave blank for uniform PRES) Value
져 On Elements 져 On Element Components ▣ From Fluid Analy 져 On Beams	<pre> List of Items Min, Max, Inc </pre>	OK Apply Cancel Help
छ Temperature छ Inertia छ Pretnsn Sectn	OK Apply	

Rys. 6.2.20. Zadanie obciążenia ciągłego na linii

Uruchomienie obliczeń.

Przed uruchomieniem procesu obliczeniowego warto zapisać bazę danych. Można tego dokonać komendą SAVE w okienku ANSYS Toolbar (patrz punkt 6.2.21). Uruchomić obliczenia komendą: *Solve > Current LS*.

Rys. 6.2.21. Uruchomienie procesu rozwiązania

6.2.3.3. General postprocessor

<u>Prezentacja wyników</u> w postaci map warstwicowych. **a)** Pokaż mapę przemieszczeń pionowych UY (na kierunek *Y*):

Rys. 6.2.22. Uruchamianie polecenia rysowania mapy składowej UY przemieszczenia

b) Pokaż mapę naprężeń rozciągających SY (na kierunek *Y*):

Rys. 6.2.23. Uruchamianie polecenia rysowania mapy składowej SY stanu naprężenia

c) Pokaż mapę naprężeń zredukowanych – von Mises (SEQV):

Rys. 6.2.24. Uruchamianie polecenia rysowania mapy naprężeń zredukowanych w obszarze tarczy

Zapisywanie oglądanego obrazu do zbioru graficznego:

Każdy obraz wyświetlony w okienku graficznym można zapisać w wybranym pliku graficznym. Po zakończeniu pracy z programem zarchiwizowane w ten sposób rysunki dostępne są bezpośrednio (np. formaty JPEG, TIFF), lub można je edytować przy pomocy programu *Display* (dotyczy to zbiorów typu GRPH).

<u>File</u> <u>Select</u> <u>List</u> <u>Pot</u>	PlotCtrls WorkPlane Para	<u>F</u> ile	<u>Select</u>	ist <u>F</u> lot	PlotCtris WorkPlane Par	a	Graphics Hard Copy
	Pan Zoom Rotate … View Settings				Pan Zoom Rotate View Settings		C Monochrome C Gray Scale
	Numbering Symbols Style				Numbering Symbols Style		© Color C BMP C Postscript
	Font ControlsWindow ControlsErase Options				Font ControlsWindow ControlsErase Options		C TIFF C JPEG © PNG
	Animate Annotation				Animate Annotation		TIFF compression Reverse Video
	Device Options Redirect Plots	To GRPH File			Device Options Redirect Plots	To Printer	C Landscape
Redirect Plots to GRPH File [/SHOW] Redirect plots to GRPH [/DEVI] Vector mode (wireframe) - for Z-buffered plots writte [/GFILE] Pixel resolution - [/REPLOT] Replot upon OK/Apply OK	n to file ? Replot Apply Do not replot		Browse.	× 	Save Plot Ctrls Restore Plot Ctrls Reset Plot Ctrls Capture Image Restore Image	To File	Cancel Help

Rys. 6.2.25. Skierowanie obrazu do zbioru graficznego

Sporządzanie wykresów naprężeń SY, SX i SEQV wzdłuż płaszczyzny symetrii tarczy:

a) Wskaż ścieżkę, wzdłuż której będzie mierzona zmienna niezależna wykresu (s) (wystarczą cztery węzły: 1, 2, 3 i 4 pokazane na rys. 6.2.26):

Rys. 6.2.26. Określenie ścieżki i jej parametrów

b) Zdefiniuj żądane funkcje (np.: *SY(s), SX(s), SEQV(s)*). Każdej z funkcji można nadać unikalną nazwę (*User label for item*):

Main Menu ®	Map Result Items onto Path	×
General Postproc	[PDEF] Map Result Items onto Path	
■ Data & File Opts	Lab User label for item	
Results Summary	These Course These has an and	
Read Results	Item,Comp Item to be mapped	Stress
Failure Criteria		Strein-total Z-direction SZ
Plot Results		Energy XY-shear SXY
Eist Results		Strain-thermal
Query Results		
Options for Outp	[AVPRIN] Eff NU for EQV strain	
Results Viewer	Average results across element	Vec.
Nodal Calcs		· 10
Element Table	[/PBC] Show boundary condition symbol	
Path Operations	Show path on display	∏ No
Define Path		
Delete Path		
Plot Paths Posell Deth	A	oply Cancel Help
Man anto Dath		HHHX/MIII
Map onto Path		VIII SHAAAAA
		X SCIEZKA1
	Tarcza	
i Auu		

Rys. 6.2.27. Wskazanie wielkości fizycznych do prezentacji wzdłuż ścieżki

c) Narysuj na wykresie wskazane funkcje. Skalę osi na wykresie, grubości i kolory linii wykresów itp. można zmieniać w *Utility Menu (PlotCtrls > Style > Graphs)*

Rys. 6.2.28. Prezentacja wykresów wskazanych składowych stanu naprężenia wzdłuż ścieżki

d) Listuj wskazane funkcje (komenda zaznaczona ramką na rys. 6.2.28).

6.2.4. Interpretacja wyników i zadania do wykonania

Porównać wyniki uzyskane dla:

- a) różnych gęstości siatek typu free (wpływ dyskretyzacji):
 - około 150 elementów (Siatka 1),
 - około 400 elementów (**Siatka 2**),
 - około 1500 elementów (**Siatka 3**).
- b) różnych typów elementów skończonych (wpływ aproksymacji)
 - elementy paraboliczne (8-węzłowe PLANE 183),
 - elementy liniowe (4-węzłowe PLANE182).

Zestawić w tabeli, dla policzonych przypadków wartości:

Liczba węzłów, liczba elementów, ilość stopni swobody, UY_{max} , SY_{max}^{A} , SY_{max}^{B} , SX^{A} , SX^{B} , $SEQV_{max}$, α_{MES}^{A} , α_{MES}^{B} , α_{T}^{A} , α_{T}^{B} – przy czym:

- SY_{max}^{A} , SY_{max}^{B} naprężenia maksymalne na kierunek Y w dnach karbów A i B uzyskane numerycznie,
- SX^A , SX^B naprężenia na kierunek X w dnach karbów A i B uzyskane numerycznie,

$\alpha_{MES}{}^{A} = SY_{max}{}^{A} / \sigma_{M} -$	współczynnik koncentracji naprężeń karbu lewego uzyskany numerycznie (<i>punkt A</i>).
$\alpha_{MES}{}^B = SY_{max}{}^B / \sigma_M -$	współczynnik koncentracji naprężeń karbu prawego uzyskany numerycznie (<i>punkt B</i>),
$\sigma_M = P/(b-2a)/\delta - \alpha_T^A, \ \alpha_T^B - $	średnie naprężenia w płaszczyźnie symetrii tarczy, współczynniki koncentracji naprężeń z literatury.

Przedyskutować uzyskane wyniki.

	Elementy	8 węzłowe	(Plane183)	Elementy	4 węzłowe	(Plane182)
	Siatka 1	Siatka 2	Siatka 3	Siatka 1	Siatka 2	Siatka 3
L. węzłów						
L. elementów						
UY _{max}						
SY _{max} ^A						
SY _{max} ^B						
SX ^A						
SX ^B						
SEQV _{max}						
α_{MES}^{A}						
α_{MES}^B						
$\sigma_{M} = P/(b-2a)/\delta =$ $\alpha_{T}^{A} =$ $\alpha_{T}^{B} =$		Rysunki do raportu → (należy je zapisać podczas pracy z programem)	1) siatka elem. 2) UY(x,y) 3) SY(x,y) 4) SX(x,y) 5) SEQV(x,y) 6) wykres:SY(s)	,SX(s),SEQV(s)	Raport finalny: 1) Wprowadzenie 2) Założenia do budowy modelu 3) Opis modelu <i>(model solid, siatki, war. podparcia i obciążenia)</i> 4) Przykładowe wyniki 5) Wyniki zebrane w tabeli 6) Omówienie wyników 7) Wristeki	

Rys. 6.29. Sposób wyznaczenia współczynnika koncentracji naprężeń z wykresu ($\alpha_T = K_{tn}$)