Exercise 1
 Free Vibration = Modal Analysis

Channel section $60 \times 40 \times 1000 \mathrm{~mm}$ (5 mm wall thickness)

Cantilever beam:

Built-in at the left end (As an option : Analysis without support = free-free)

Material:

steel $\mathrm{E}=200 \mathrm{GPa}$,
$\mathrm{ni}=0.3, \mathrm{ro}=7800 \mathrm{~kg} / \mathrm{m} 3$

4 el.

8 el.

$\mathrm{J}=\mathrm{J}_{\mathrm{n}}=1.0097 \mathrm{I}^{-7} \mathrm{~m}^{4}$
$\mathrm{A}=0.65 \cdot 10^{-3} \mathrm{~m}^{2}, \quad \mathrm{~h}=13.27 \mathrm{~mm}$

Subsequent steps:

Preprocessor (set preliminary information):
0. Selection of system of Units (pure SI or modified-SI)

1. Element type (Element Solid185, K2 option - Enhanced Strain)
2. Material + density !! (ro $=7.8 e-9 \mathrm{t} / \mathrm{mm} 3$ OR $\mathrm{ro}=7800 \mathrm{~kg} / \mathrm{m} 3$)

Prep / Modeling (creating "underlying" geometry)
3. Characteristic 6 Points of Section Geometry (see picture)
a. Create / KeyPoints /in Active CS
b. Check it out!: List / Keypoints (how many you expect??)
4. Remaining Points by Symmetrical Reflection

a. Reflect/KeyPoints (select by "Box")
b. Check!: List/Keypoints (how many you expect??)
5. Surface Creation: Create quadrilateral Surfaces (counter-clockwise picking sequence starting e.g. from the bottom left Keypoint)
a. Create / Areas / Arbitrary / Thru Keypoints
b. Check!: List/Areas (how many you expect??)
6. Create solid geometry by extruding a surface by 1000 mm along the z -axis)
a. Operate / Extrude / Areas / by XY offset (select either via "Box" or PickA/)
b. Check!: List/Volumes (how many you expect??)

Merge geometry items and numbering (merging coincident points)
7. Preprocessor / Numbering Control / Merge Items (select A/D)
8. Display LINES and set the division on the lines). Set the division into 4, 10, 8 and 50 elements (see the picture)
a. Plot/Lines
b. Preprocessor / Meshing / Mesh Tool (select in turns the lines divided into 4 elements, later into 10 , into 8 and finally into 50 - compare the picture for meshing density !!)
Check!: (is the division on the lines correct?)
9. Mesh Generation on Solids
a. Preprocessor / Meshing / Mesh Tool / Mesh Volumes (select All)

Check!: is the division into elements "mapped"? - are the elements of the HEXA type????
10. Merge Numbering: Preprocessor / Numbering Control/Merge Items (select All)

Analysis settings (SOLUTION module) and solution

11. Analysis type (set 25 modes. In Options set: EXPAND, Elemental Solution)
12. Loads and boundary conditions (attention there are no loads; BC: beam built-in into the wall)
13. Solution / Solve (Current Loadstep)

Postprocessing of the results

14. General Postprocessing
a. Results Summary (in Modal Analysis - Ansys substeps mean eigenfrequencies)
b. Read Results
c. Result Viewer - (preferred option)
d. Animation also controlled by the command: Plot Controls / Animate

Presentation of the results:

1. Frequency Table (in Hz)
2. Plots of deformation of several modes of vibrations, ie. eigenvectors (try to name them, i.e. $1^{\text {st }}$ mode of bending in vertical plane, or : Torsion, etc)
3. For some eigenvectors - map of DISPLACEMENT (for the characteristic component of the displacement, e.g. vertical or horizontal)
4. For some modes - STRESS map (characteristic component, e.g. axial = Sigma_z). Turn your attention: it is so-called modal stress distribution = just the shape, NOT values
5. Check for "high" frequency modes (e.g. 18, 19, 25...) Are they smooth enough?

Drawings should be on a WHITE background (e.g. Plot Controls / Style / Colors / Reverse Video) - What is the meaning of the displacement VALUE in eigen-modes (e.g. max displacement) ? - What is the meaning of the stress VALUE in eigen-modes? (e.g. max vonMises stress)?

As an OPTION / Modification:

Remove the boundary conditions, i.e. the fix in the wall (you get so-called "free-free" configuration) Compare eigen-frequencies and modes - compare to the previous one. Draw some general conclusions. Have you obtained six rigid-body modes (eigenfrequency ≈ 0)?

