Geometry model of a 3-D Clevis

In this exercise you will create an analytic solid model of a clevis by defining MSC/PATRAN points, curves, surfaces, solids, and a user define coordinate system. Throughout this exercise you will become more familiar with the use of the MSC/PATRAN select menu. Shown below is a drawing of the model you will build and suggested steps for its construction.

Suggested Exercise Steps:

- 1) Create a new database and name it Clevis.db.
- 2) Create a surface model of the top half of the clevis as shown in the front view on the right side. Place the center of the hole at [0,0,0].
- 3) Create solids that represent the first third of the solid model's total width
- Create the bottom half of your model by mirroring all of the solids about the y-axis mirror plane located at y=0.
- 5) Create the remaining solids that represent the last two thirds of your model in the width direction (z-direction).

а	File G	roup Viewpo	ort Viewing	Display Prefere	nces Tools Help Util	lities			
	Home	Geometry	Propertie	s Loads/BCs	Meshing Analysis	Results Durabilit	у		
1		🝯 🖬 🎒	88 89	₹ ++	()		1/ 2 1		
1	<u>b</u>	0 💰 🔨	5 54	🞯 🖪 Q Q	•		L 😵 😜 🐴		
	D	efaults	Transforms	Viewport	Display	Orientation	Misc.	Web	Model Tree

In order to create a new database	New Database	
You have to do as follows:	Model Preference for:	
a. File / New or on a symbol	Clevis.db C:\MSC\Patran_x64\20122/template.db	
New in Home/Defaults	Change Templete	
section	Based on Model	
h Enter clevis as the File name	Modify Preferences	
add Click OK	Set Working Directory to Database Location	-
	Look in: 📙 clevis 🗸 🗢 🖻 🖆 🗊 🗸 Approximate Maximum	
/ New Model Preference	Name Date modified Ty Model Dimension:	
	No items match your search.	
c. Select Structural and Click OK		_
	Analysis Code:	
_	MSC.Nastran	
		_
	OK Reset	

You will now use Curvilinear transformation to create the outer radius of the lug by radially translating the curves that define a quarter of the hole.

a A

To accomplish this you will first need to create a cylindrical coordinate frame located at the center of the hole.

- a. Create->Coord->3point chose Cylindrical as a Type of Coord and hit – Appl
- b. Transform->curve->Translate check Curvilinear in Refer. CF, click on newly created coord - Coord 1 as a referenc coordinate frame and Uncheck Auto Execute.
- c. Show labels by pressing in *Home/Display* section.
 d. Insert Curve 1 and Curve 2 to the curve list

ΤΙΡ In order to choose more than one curve HOLD down L.Shift while selecting curve

ometry	
Action: Create	b Action: Transform
Object: Coord V	Object: Curve
Method:	Method: Translate 🔻
	Curve ID List
Coord ID List	5
2	Type of Transformation
VDe: Cylindrical	Cartesian in Refer. CF
[cymonou	O Curvilinear in Refer. CF
Refer. Coordinate Frame	
Coord 0	Refer. Coordinate Frame
	Coord 1
Auto Execute	Translation Master
Origin	
[0 0 0]	
Point on Axis 3	
[0 0 1]	
Point on Plane 1-3	
[1 0 0]	
	=
-Apply-	Translation Parameters Repeat Count
	1
	Delete Original Curves
	Curve 12
	-Apply-

You have now created all the curves that you will need to complete your clevis model. Next, you will create the necessary surfaces for the model. You will start by creating a 4x2 (in x Surface that defines part of the upper half of the clevis body

 a. Create->Surface->XYZ insert value <-4 2 0> to define Vector, and [-2 0 0] to define point of origin and hit – Apply-

The next series of Surfaces will be created using the *Curve* Method:

b. Create->Surface->Cur , uncheck Auto Execute and select Curve 1 and Curve 2 in a Starting Curve List section and Curve 5 6 as a Ending and hit –Apply-

Click on in the *Home/Misc.* section to display the lines.

To create the next surface you will use the Select Menu to help you define an existing curve and surface edge as the boundaries of the new surface.

- c. Chose **Curve 4** as *Starting Curve,* click ^C and l.click on edge 9-10 of a surface 1 and hi **-Apply**
- d. Chose **Curve 3** as *Starting Curve,* click and l.click on **Points 8** and **10** and hit **–Apply-**

You will now use the Surfaces you have just created as patterns to define solids (3-dimensional entities)

- a. Create->Solid- Normal , insert 0.25 as a Thickness, Uncheck Auto execute
- b. Chose all surfaces and click Apply-

Change the view to **Iso 1** in *Home/Orientation* section and **Fit view**

	Object: Solid Method: Normal	
5	Method: Normal	
	Solid ID List	
	1	
	Thickness Input Options Constant Thickness	
	O Varying Thicknesses	
	Thickness	
	0.25	
	Solids per Surface	
	1	
	Flip Surface Normal	
	Surface List	_
'	Surface 1:5	

Finite Element Model of a 3-D Clevis and Property Assignment

- Apply a non-uniform mesh seed near a critical location of the model.
- Apply a global mesh to the seeded model.
- Apply material and element properties.

Model Description:

In this exercise you will define a finite element mesh for the Clevis model you developed earlier. You will use mesh seeding to create a refine mesh with a higher mesh density near the bottom of the hole where you will apply a force load in a future exercis

5. Create a 3-D element property named, Solid_Elements_Steel, for the entire includes the steel material definition

 3. Creating Mesh a. Create->Mesh->Solid or simply click on b. Change element shape to Hex c. Select all solid parts d. Uncheck Automatic calculation and insert Value 0.5 and hit –Apply 	If project is unreadable You have to hide Labels and decrease the size of nodes by pressing in <i>Home</i> section:	Finite Elements Action: Create a Object: Mesh Type: Solid Output ID List Node 1361
	b	Element 457 Elem Shape Hex Mesher IsoMesh Topology Hex8 Topology Hex8 S IsoMesh Parameters Node Coordinate Frames Solid List Solid 1:22 Global Edge Length Automatic Calculation Value 0.5 Prop. Name:None Prop. Type:NI/A Select Existing Prop Create New Property

Page 17 of 26

Loads and Boundary Conditions on a 3-D Clevis

Objectives:

- Apply constraints to your model.
- Create and apply a Pressure

Suggested Ste

- 1. Create a Pressure case
- 2. Create a nodal displacement boundary condition named **Clambed**
- 3. Create a Pressure boundary condition

Model Description:

In this exercise you will create a loading condition and a constraint set for the clevis model. The base of the lug will be clamped. The hole will be under quadratically varying pressure $P = 6900 * (1-x^2)$.

Page **21** of **26**

Disp	lay both the displacement	Display Preferences Tools Help		
<u>and</u>	force on the finite	Entity Color/Label/Render		
<u>eler</u>	nent model	Plot/Erase		
a)	Display/Load/BC/Elem. Props and check Show on	Highlight		
b)	FEM only and hit – <i>Apply</i> - After that, in <i>Loads/BCs tab</i>	Geometry Finite Elements	Show on FEM only Show LBC/EI. Prop. Vectors	
	choose Plot markers as a	Load/BC/Elem. Props	Show LBC/El. Prop. Values	
c)	Action Highlight Displ_Clamped an	Named Attributes	Vectors/Filters	
	-Appl . If you want to show	Coordinate Frames	Label Style	Load/Boundary Conditions
	pressure, highlight al	Titles	Beam Display	
	Press_Pressure before you hit <i>–Apply-</i>	Continue (1D:Line Display Pin DOFs	Modify Vector Display
			Display Spring DOFs	Current Load Case:
				Default
			Coordinate Frames	Type: Static
0	AN A AN		Reset	Assigned Load/BC Sets
	ALL ALL		Apply Cancel	Press_Pressure
	- States - States		Apply Caliber	K. 2
				Group Filter
				O All Groups
				Current Viewport
				Select Groups
				default_group
	-{\}`			
		42456		
		41 6 41 6		
		3.		-Apply-

Page 24 of 26

SOBCASE1	LUAD										
DAREA ID	TYPE	T1	T2	T3	R1	R2	R3				
1	FX	-1.011008E+01				3.790687E+00	2.749616E+04				
	FY		4.583406E+03		1.718777E+03		-2.750044E+04				
	FZ		100000 B	8.715680E-05	5.994861E-05	5.229408E-04					
	MX				0.00000E+00						
	MY					0.000000E+00					
	MZ						0.00000E+00				
	TOTALS	-1.011008E+01	4.583406E+03	8.715680E-05	1.718777E+03	3.791210E+00	-4.273438E+00				
MSC.NAS	STRAN JOI	B CREATED ON 24	-MAR-14 AT 20:	59:04		MARCH 24, 2	2014 MSC.NASTRAN	7/	6/12	PAGE	63

Post Processing of Stress Results

Objectives:

- To post-process stress results from MSC/NASTRAN
- To use MSC/PATRAN to create fill and fringe plots to determine if the analyzed part will meet a customer defined criteria or whether the part needs to be redesigned and re-analyzed

Patran 2012.2 64-Bit 25-Mar-14 01:39:31 Fringe: Default, A1:Static Subcase, Stress Tensor, , von Mises, (NON-LAYERED)

CLEVIS supplement

Create 6 different plots with results:

1) Vertical translational displacements in Y direction

- 2) Von Mises stress σ_{equiv}
- 3) Stress in X direction σ_x with averaging, continuous σ_x
- 4) Stress in X direction σ_x without averaging, discontinuous σ_x
- 5) Stress in X direction σ_x with averaging, continuous σ_x for the base of the clevis (2 different views)

Results	
Action: Create	
Object: Fringe	
🗟 5 🛃 🕅 🖾	
Show Spectrum	
Show Viewport Legend	
Spectrum Range	_
Style: Discrete/Smooth	I
Shading: None	-
0.0 1.0 0.0 Element Shrink Factor	7
Display: Element Edges	
Style:	
Midth:	
Title Editor	
Show Title	
Show Max/Min Label	
Show Fringe Label	
Label Style	
Show on Deformed	

PLOT no. 4		
Stress in X direction σ_{v}	Results	Results
without averaging, discontinuous σ_{x}	Action: Create	Object: Fringe
1 Results -> Create -> Fringe		
8 File -> Images> Apply 2	Select Result Cases	Coordinate Transformation:
		Scale Factor 1.0 Filter Values: None
	Select Fringe Result	Averaging Definition: Domain: None
3	Stress Invariants, Minor Principal Stress Invariants, Von Mises Stress Tensor,	Method: Derive/Average
		Define PCL Expression
	Position((NON-LAYERED)) Quantity: X Component 4	Existing Fringe Plots Save Fringe Plot As:
	Animate	
	Apply Reset	7 Apply Reset

PLOTS: no. 5 and no. 6

Stress in X direction σ_x with averaging, continuous σ_x for the base of the clevis (2 different views)

1 Results -> Create -> Fringe

	Results
	Action: Create
	Object: Fringe
	≡ĩ
_	≣_ Select Result Cases
2	Default, A1:Static Subcase;-MSC.NAS
	Select Fringe Result
	Stress Invariants, Mean Pressure
3	Stress Invariants, Von Mises
	Position((NON-LAYERED))
	Quantity: X Component 🔽 👖
	Apply

R	Action: Create Object: Fringe
	5 💽 🐼 🐼 🕅
	Select Elements 6
	Put cursor in <i>Select Elements</i> and go to the next slide
	Addtl. Display Control: Free Faces
	Apply Reset

What is the distribution of the σ_x stress at the base of the clevis along the vertical direction?

<u>Check the value of the displacement in the direction Y</u> of the node located on the lower surface of the hole at the distance 6 [in]:

Reset Graphics

Check the value of the displacement in the direction Y of the node located on the lower surface of the hole

at the distance 6 [in]:

Results -> Create -> Cursor -> Vector

Results	Cursor Data	
Action: Create	Summary	Manual Adver
Object: Cursor Method: Vector	Cursor Name: default_Cursor Patran 2011 Analysis Code: MSC.Nastran Load Case: Default, A1:Static Subcase	
	Select Nodes	
Select Result Cases	Entity ID XX YY	ZZ
Select Cursor Result Constraint Forces, Rotational		
2 Constraint Forces, Translational Displacements, Rotational Displacements, Translational Stress Tensor,	Write Report Report Setup	
Position((NON-LAYERED))	Reset	Cancel
Target Entity: Nodes 3 Apply Reset	this wind will appe	ow ar

~

4

11

After selection of the desired node you will see: 1 Node ID 1 its 2 components of displacement (XX, XX, 77)

² its 3 components of displacement (XX, YY, ZZ)

3 Read value of YY

Cursor Data				
Summary				
Cursor Name: de Patran 2011 Analysis Code: M Load Case: Defa	fault_Cursor ISC.Nastran ult, A1:Static S	Subcase		
Select Nodes	1			
Entity ID	XX	YY	ZZ	2
<				2
	VVri	e Report		
	Repo	e Report ort Setup		

BEAM

Compare **the obtained results from the FE analysis** (*value of YY, previous slide*) to the **deflection** of the **simple model of the beam**.

The beam is fixed at one end and loaded by **the same value** of **force** as for the clevis.

The material properties for clevis and beam are the same.

BEAM

1. Calculate the deflection of the beam ($f_{beam} = \cdots$).

Data:		
$l = \cdots [in]$	length	
$b = \cdots [in]$	width	
$h = \cdots [in]$	height	
$E = \cdots [psi]$		
$I [m^4]$		
y = [m]		

 $\tilde{P} = \cdots$ [lbf] resultant load in Y direction (read from the file *clevis.f06*)

- 2. Calculate the relative error.
- 3. Draw conclusions.

Report should also contain:

a) Figures:

- 1) Geometrical model (1 figure)
- 2) FE model with load and boundary conditions (1 figure)
- 3) 6 plots with the results:
 - Vertical translational displacements in Y direction
 - + Von Mises stress σ_{equiv}
 - Stress in X direction σ_x with averaging, continuous σ_x
 - Stress in X direction σ_x without averaging, discontinuous σ_x
 - Stress in X direction σ_x with averaging, continuous σ_x for the base of the clevis (2 different views)

Total number of figures = 1 + 1 + 6 = 8

A white background of all figures is obligatory.

A date on the plots with the results is **<u>obligatory</u>**.

b) <u>Comparison</u> between the obtained results from the FE analysis (*value of YY*) and the deflection of the simple model of the beam

- the value of the displacement in the direction Y of the node located on the lower surface of the hole at the distance 6 [in]
- formula for the deflection of the beam ($f_{beam} = \cdots$)
- data and calculations with proper units
- relative error calculations

c) <u>Conclusions</u>