

LECTURE 6

INTERPOLATION BY SPLINES

In this lecture we consider the problem of the spline interpolation. In contrast to the

interpolation methods described in the Lecture 1, where a single polynomial is used

for the whole interpolation interval, the spline technique consists in using different

low-order polynomials for each subinterval between the interpolation nodes. The

polynomials defined for neighboring subintervals are “glued” at the common nodes

in such a way that sufficient regularity of the spline function is ensured. Here we

concentrate on one but very important example of a spline function – the cubic

spline.

Consider the set of the n interpolation nodes {(,), (,),...,(,)}0 0 1 1 n 1 n 1x y x y x y 
, where

..0 1 n 1a x x x b     .

The cubic spline C = C(x) is defined as follows:

1. () ([,])2C x C a b , i.e., it is continuous together with its first and second derivatives

2.
, , , ,[,]

() : ()
k k 1

3 2

k k 3 k 2 k 1 k 0x x
C x C x a x a x a x a



     , ,..,k 0 n 2  , i.e. inside each

subinterval it is defined as the 3rd –order (cubic) polynomial.

It follows that the local polynomials Ck, k = 0, must satisfy the interpolation conditions

() , ,..,k k kC x y k 0 n 1   ,

and the matching conditions

() ()

() () ,..,

() ()

k 1 k k k

k 1 k k k

k 1 k k k

C x C x

C x C x k 1 n 2

C x C x










   
  

The cubic spline

x0 x1 x2 xkxk-1 xk+1 xn-2 xn-1

y0

y1

y2

yk-1

yk
yk+1

yn-2

yn-1

C1(x)

C0(x)

Ck-1(x)

Ck(x)

Cn-2(x)

y

x

Note that the overall number of these conditions is 4n - 6. At the same time, the total number

of unknown coefficients in the local polynomials is 4(n - 1). Thus, the problem contains two

free parameters which have to be prescribed in order to find the unique spline.

Usually, the endpoint conditions are formulated: either for the first or the second derivative of

the spline function:

(()0C x   or ()0C x  ) and (()n 1C x 
  or ()n 1C x 

 )

In principle, the natural cubic spline is such that

()0C x 0  , ()n 1C x 0
 

The natural spline has a remarkable property. It turn out that among all functions which

interpolate through the given nodes, the natural spline minimizes the following integral

 () min

b
2

a

C x dx 

More precisely, we have the following result:

Let ,([])2

0 n 1f C x x  be an arbitrary function. Assume that either ()0C x 0  and

()n 1C x 0
  or () ()C a f a  and () ()C b f b  . Then

[()] [()]
b b

2 2

a a
C x dx f x dx  

Proof:

,

()[() ()] ()[() ()] ()[() ()]

()[() ()] ()[() ()] ()[() ()]

() [() ()]

k

k 1

k

3

b bx b

x aa a

b

6 a c

a

n 1 x

x

n0 ok st

k

C x f x C x dx C x f x C x C x f x C x dx

C b f b C b C a f a C a C x f x C x dx

0 0 C x f x C x dx












             

              

      

 





() (), , ,..

,

,

,

[() ()]

[() ()]

k

k 1

k

k

k 1

k

n 1 x

k 3
x

k 0

n 1
x x

k 3 x x

because C x f x k 0 1 n

k 0
0

6 a f x C x dx

6 a f x C x 0





 













   

   

 



Thus, we have obtained the equality () () [()]
b b

2

a a
C x f x dx C x dx    .

Then

[()]

[() ()] [()] () () [()]

[()] [()]

b
2

a

b b b b
2 2 2

a a a a

C x dx

b b
2 2

a a

0 f x C x dx f x dx 2 f x C x dx C x dx

f x dx C x dx



          



  

   

 

and the conclusion follows immediately. This ends the proof.

The question remains how to construct the spline function. In principle, we could derive the

set of 4n-4 algebraic equations for the unknown coefficients of the local cubic polynomials

using interpolation, matching and two additional conditions. We will end up with rather

“awful” system of linear equation: the matrix of such system would not exhibit any

convenient structure and no especially effective solution method could be applied. There

exist, however, also the “smart” approach which we now describe.

Note that since the spline function is piece-cubic polynomial then its second derivative is

piecewise-linear and continuous (see figure). It can be written as

,[]
() ()

() ()

k k 1
kx x

k 1 k
x k x k 1

k 1 k k 1 k

C x C x

x x x x
C x C x

x x x x






 

  

 
  

 

or

() k 1 k
k k k 1

k k

x x x x
C x m m

h h




 
  

where () ,k k k k 1 km C x h x x
   .

It this formula is integrated twice, we get

() () () () ()3 3k k 1
k k 1 k k k 1 k k

k k

m m
C x x x x x p x x q x x

6h 6h


        

where the symbols pk and qk denote the local integration constants.

x0 x1 x2 xkxk-1 xk+1 xn-2 xn-1

y0

y1

y2

yk-1

yk
yk+1

yn-2

yn-1

y

x

L0(x)

L1(x)
Lk-1(x)

Lk(x)

Ln-2(x)

These constant can be determined using the interpolation conditions

() , ()k k k k k 1 k 1C x y C x y  

One easily obtains

2 k1 1
k k k k k k k k6 6

k

y
y m h p h p m h

h
    

2 k 11 1
k 1 k 1 k k k k k 1 k6 6

k

y
y m h q h q m h

h


      

and the final formula for the local cubic polynomial reads

() () () ()

()

3 3k k 1 k 1
k k 1 k k k k 16

k k k

k 1 1
k 1 k k6

k

m m y
C x x x x x m h x x

6h 6h h

y
m h x x

h


 




 
        

 

 
   
 

It remains to evaluate the nodal values of the second derivative , ,...,0 1 n 1m m m 
.

Note that we haven’t used the matching conditions for the first derivative yet. The local

formula for this derivative is

() () () ()2 2k k 1 k 1 k 1
k k 1 k k 1 k k6

k k k

m m y y
C x x x x x m m h

2h 2h h

 
 


        

Consider the internal node xk. Using the above formula one obtains

()

k

k 1 k1 1 1 1
k k k k k 1 k k k k 1 k k3 6 3 6

k

d

y y
C x m h m h m h m h d

h


 


        

Replacing k with k-1 yields immediately the formula for the derivative of Ck-1. Then insertion

of xk leads to the following result

()

k 1

k k 11 1 1 1
k 1 k k k 1 k 1 k 1 k k 1 k 1 k 1 k 13 6 3 6

k 1

d

y y
C x m h m h m h m h d

h




       




      

Finally, using the matching condition () ()k 1 k k kC x C x
  the following system of algebraic

equations is obtained

() , , ,..,k 1 k 1 k 1 k k k k 1 kh m 2 h h m h m u k 1 2 n 2        

where () k 1 k k k 1
k k k 1

k k 1

y y y y
u 6 d d 6

h h

 




  
    

 
.

As we already know, two additional equations are needed to close the system. If we want to

fix the endpoint values of the first derivative, then we will use the following equations

() ()1 1
0 0 0 0 1 0 0 0 0 1 03 6

C x h m h m d 2h m h m 6 d          

() ()1 1
n 1 n 2 n 1 n 2 n 2 n 2 n 2 n 2 n 2 n 1 n 23 6

C x h m h m d h m 2h m 6 d           
        

It we want to fix the endpoint values of the second derivative, we simply write 0m  and/or

n 1m   .

Summarizing, the complete set of the linear equations for the nodal values of the second

derivative of the cubic spline function can be written as follows

() ,

() , ,..,

() ,

0 0 0 0 1 0

k 1 k 1 k 1 k k k k 1 k

n 1 n 2 n 2 n 2 n 1 n 2

m 2h m h m 6 d k 0

h m 2 h h m h m u k 1 n 2

m h m 2h m 6 d k

or

n 1or

 

 

   

     

    


     
      

In the matrix-vector notation: T m r . Note that the matrix T has nice 3-diagonal

structure. The nonzero elements of T can be stored inside three vectors: a,b and c.

0 0

1 1

k k k

n 2 n 2 n 2

n 1 n 1

c b 0 0 0 0 0

a c b 0 0 0 0

0 0 0 0

0 0 a c b 0 0

0 0 0 0

0 0 0 0 a c b

0 0 0 0 0 a c

  

 

 
  
 
 
 

  
 
 
 

  
  

T

The actual values of the matrix entries depend partly on the applied endpoint conditions:

, ,..

()

,

0

k k 1

n 1 n 1 n 2

a 0

a h k 1 n

or

2

a 0 a

not used

h



  




   
   

 , ,..

()

,

0 0 0

k k

n 1

b 0 b h

b h k 1 n

not use

2

b

r

d

o

0

  


   
 

() , ,..,

0 0 0

k k 1 k

n 1 n 1 n 2

c 1 c 2h

c 2 h h k 1 n 2

c 1

or

or c 2h



  

 


   
  

In order to solve the obtained 3-diagonal system, the specially design variant of the Gauss

Elimination can be used. This method is called the Thomas algorithm. We will derive this

algorithm assuming that the system to solve has the following form

, ,..,

0 0 0 1 0

k k 1 k k k k 1 k

n 1 n 2 n 1 n 1 n 1

k 1 n 2

c m b m r

a m c m b m r

a m c m r

 

    

 

 

   
  

Thomas Algorithm

Consider two first equations of this system

0 0 0 1 0

1 0 1 1 1 2 1

c m b m r

a m c m b m r

 

   

and assume that
0c 0 . First, we eliminate m0

, / , /0 0 0 0 00 0 1 0

1 0 1 1 1 2 1

0 b c r c

a c

m

m r

m

m b m

    

  









and next we transform the second equation to the ”standard” form

() / : ()

, ,

1 0 1 1 1 2 1 1 0 1 0 1

1 1 01
1 1

1 0

1 1 2 1

1 1 0 1

c a m b m r a c a

r ab
m

a a
m

c c

  

 



 

    






  



In the process, we have introduced two auxiliary numbers 1 and 1 .

Note that the reduced system with the unknowns ,...,1 n 1m m 
 has 3-diagonal structure and its

first equation is in the form ready for further elimination. Thus, the process of elimination can

be continued and after k steps we deal with the problem of elimination of the unknown mk

which proceeds as follows

/

()

, ,

k k k 1 k k 1

k 1 k k 1 k 1 k 1 k 2

k 1 k 1 k 1 k
k 1 k 1 k 2 k 1 k 1

k 1

k 1 k k 1

k 1

k 1 k k 1 k 1 k

k 1 k 1 k 2 k 1 k k

k

1

1

m m a

a m c m b m r

c a m b m r

b r a
m m

c

a

a c a


  














 

     

  
     

  

   



  

  

  


   

 



   



Two more auxiliary number k 1  and k 1  are defined in the process.

Finally, after n-1 such steps we arrive at the end of the system. The last elimination step goes

as follows

/

()

n 2 n 2 n 1 n 2 n 1

n 1 n 2 n 1 n 1 n 1

n 1 n

n 1 n 2 n 1
n 1

2 n 1 n 1 n 1 n 2 n

n 1 n

1

2 n 1

m m a

a m c m r

c a m r

r a
m

c

a

a

 

 





    

    

     

  


 





  





  

 







Note that since the last equation contains only two unknown the elimination process actually

terminates and the last unknown mn-1 can be effectively calculated. Note also that in the

process of elimination, we arrived at the recurrent formula (see previous page) which can be

now conveniently re-written in the form

, , ,..., ,k k k k 1m m k n 2 n 3 1 0      

It means that all eliminated unknowns can be found one after another, in the reverse order.

The Thomas algorithm can be summarized as follows:

()

() ()

() ()

0 0 0 0 0 0

k+1 k k+1 k k+1

k+1 k+1 k k+1 k+1 k k+1

n-1 n-1 n-2 n-1 n-1 n-2 n-1

k k k k+1

STAGE 1 (sweep - up)

STAGE 2 (sweep -

α = b / c ; β = r / c ;

for k = 0 : n - 3

α = b c - α a ;

β = r + β a c - α a ;

end;

m = r + β a c - α a ;

for k = n - 2 : 0 : -1

m = β

down

+ α m ;

)

end;

Remark:

Since the Thomas algorithm is the variant of the Gauss Elimination and as such it can fail

unless the matrix obeys some restriction (see Lecture 7). The sufficient conditions which

guarantee that the calculation with the Thomas algorithm will end up successfully are:

) , , , , ,..,

)

, ,..,

,

0 n 1 k k

k k k

0 0 n 1 n 1

1 c 0 c 0 a 0 b 0 k 1 n 2

2

c a b i 1 n 2

c

conditions of diagonal dominan e

b

c

c a



 

     

   

 

At least one of the above inequalities must be strict!

