
 
 

 

 

 

 

LECTURE 7 

BASIC NUMERICAL METHODS FOR 

LINEAR ALGEBRAIC SYSTEMS 
 

 

 

 

 

              



Consider the system of n linear equations with n unknowns , ,...,1 2 nx x x  
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In the matrix/vector notation, this system can be written as 
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The Gauss Elimination is the systematic method to solve the linear system. The idea is simple: 

first the original system is transformed to the system with the upper triangular matrix (and 

the same solution), next this new system is solved directly by the back-substitution 

procedure.    

 

Consider the first step of the transformation of the original system to the upper-triangular 

form. In this step, the unknown x1 is eliminated from the equations E2, E3,..,En. To this aim, 

the equation E1 is pre-multiplied by appropriate factors and subtracted from the other 

equations of the system. This transformation can be written as 
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The matrix-vector form of the linear system obtained after the first step of the elimination 

process is   
( ) ( )1 1A x b , where 
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This procedure is continued until the target form of the system is achieved. After (k-1)
th

 step 

the system in the following form is obtained. 
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The upper index in the brackets indicates how many times each equation has been modified so 

far. In the k
th

 step, the equation 
( )k 1

kE 
 is used to remove xk from the equations 

( ) ( ),...,k 1 k 1

k 1 nE E 

 . 
 

The corresponding transformation formulas are 
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and the matrix/vector form of the obtained system is  
( ) ( )k kA x b , where 
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The elimination stage of the solution procedure end after n-w step, when we finally arrived at 

the upper-triangular system 
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In the matrix/vector form, we have   
ˆUx b, where 
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The upper-triangular system can be solved directly by the back-substitution procedure. This 

algorithm consists in solving the equations one by one in the reversed order: 
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The pseudo-code of the overall Gauss Elimination method has been presented in the next 

page. 
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LU FACTORIZATION 
 

We will show that the gauss Elimination method provides a very important “by-product” – the 

lower/upper triangular factorization of the matrix A (LU factorization).  

 

Consider the first step of the elimination procedure. Using the numbers  
( ) ( ) ( )

, , ,, ,...,1 1 1

2 1 3 1 n 1l l l , one 

can construct the matrix 
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Note that the matrix of the system obtained after the first step of the elimination can be 

expressed as the following product   
( ) ( )1 1A L A  (exercise for the Reader). 

 

 

 



In the similar manner, the l-numbers defined during the k
th

 step of elimination can be used to 

define the matrix 
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The matrix obtained in effect of this step can be expressed as 
( ) ( ) ( )k k k 1A L A . 

 

We immediately conclude the upper-triangular matrix U obtained in the end of the elimination 

procedure can be expressed by the formula 
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An amazing fact is that the matrix inverse to L

 

is lower triangular and explicitly given as 
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The proof of this fact can be found in the standard textbooks on numerical algebra, e.g., in the 

excellent book “Numerical Linear Algebra” by L.N. Trefethen and D. Bau. 
 

Hence, we have obtained the following formula (LU factorization) 

 

A LU  
 

The pseudo-code of the basic version of the LU factorization is presented in the next page. 
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( , : ) ( , : ) ( , ) ( , : )

. !

.

( )

or k 1 n 1

for j k 1 n

A j k A j k A k k

A j k 1 n A j k 1 n A j k A k k 1 n

end

end

1 Original entries of have been destroyed

2 The main d

operates inside the original matri

f

x

 

 



     


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

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Note :

A

Basic LU decomposition

.

( )

ianonal and the upper triangle of contains

nonzero elements of the factor

3 The lower triangle of contains the elements of the factor

diagonal elements of are 1 and need not to be stored

A

U

A L
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Before we go further in our discussion, consider the numerical cost of the Gauss Elimination 

and LU factorization. Quick look at the summary of the GE algorithm leads to the following 

conclusions: 

 
1. In the first stage (elimination) three nested loops have to be performed. Thus, roughly 

speaking, the number of floating point operations like multiplications and additions is 

proportional to the third power of the dimension of the system, i.e., proportional to n
3
. 

More precise result (assuming that n is sufficiently large) is that the number of the 

floating point

 

operations (flops) is close to 
32

3
n . 

2. In the second stage (the back-substitution), two nested loops have to be performed. Thus, 

the number of the flops is proportional to n
2
. Hence, for large values of n the numerical 

cost of the back-substitution is a negligible fraction of the numerical cost of the first 

stage (elimination). 
 

 

 
 
 



Having in mind the estimation of the numerical cost, consider the situation when the sequence 

of the linear systems with the same matrix A but different right-hand side vectors has to be 

solved: 
( ) ( ) , ,..,j j j 1 m Ax b

  

If “ordinary” Gauss Elimination is used, the overall numerical cost of this tusk would be, 

roughly speaking, proportional to 
3m n . The reason for this estimate is that any time a new 

system in the sequence is being solved the matrix A is transformed to the upper-triangular for 

at the cost proportional to 
3n . However, this sequence of problems can be solved much more 

effectively using the LU factorization. The idea is to compute L and U factors only once. This 

way, the solution to each system in the sequence can be determined at the cost of two 

solutions of the triangular linear systems: 
  

( )

( ) ( )

( )

) ( )

) ,..,

3

j

j j

j

1 Compute factors and of the matrix cost n

2 for j 1 m

 
  



L U A

Ly b
LUx b

Ux y

 

 

The pseudo-code for this approach is shown in the next page. 
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%
%

x n y n A n n
y 1 b 1

for j n 1 1 1
for j 2 n

x j y j
y j b j

for k j 1 n
for k 1 j 1
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end
end

x j x j A j j
end

end


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THE CONCEPT OF PIVOTING 
 

The basic variant of Gauss Elimination may fail even if the matrix A is nonsingular. Indeed, 

consider the k
th

 step of the elimination stage and assume that the unknown xk has already 

disappeared from the equation 
( )k 1

kE 
, i.e., the coefficient 

( )

,

k 1

k ka 
 is equal zero.  Then, none of 

the l
(k)

 number cannot be calculated – we have division by zero!  
 

Such situation occurs for instance (in the first and only elimination step) for any system with 

the matrix 

0 1

1 1

 
  
 

A
 

 

But this is not a whole story. Consider a small modification in the above example: 
 

1010 1

1 1

 
  
 

A  

 

This time, the Gauss Elimination should work fine and  the computations are hoped to yield 

the LU factors of A, i.e.:               ,
10

10 10

1 0 10 1

10 1 0 1 10

  
    

   
L U  



Unfortunately, the computer’s arithmetic is not exact. In our calculation, we will mimic real 

computations by assuming that the floating point numbers are represented in the exponential 

form (the base will be equal 10 instead of 2) and the mantissa is accurate up to the seventh 

digit after the decimal point.  
 

On such “computer”, the matrix element  u22  will be evaluated as follows 

 

. ( . )10 10 10 10 1010 1 1 10 0 0000000001 10 1 0 0000000001 10 10        
only these digits

are resolved

 

 

Hence, the exact U factor will be in fact replaced by its approximation 
 

10

10

10 1

0 10
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U

 
 

Note also that the factor L will be calculated exactly. Next, let us calculate the product of the 

factors L and U : 
1010 1

01

 
   

 
A LU A

 
 



As we see, the difference between  A and A is significant! 
 

 

Let us explore further consequences of this small difference between exact and computed U 
factors. Consider the linear system 

Ax b ,   
1

0

 
  
 

b  

 

The exact solution is                   
( )

( )

10 1

10 1

11 10

11 10

 

 

    
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   
x

 
 

If the (inexact) LU factorization is applied the computations will proceed as follows 
 
 

!!!

1

10 10

2

10
1

1010
2

y1 1 0 1 1

y0 10 1 0 10

x 1 010 1

x 10 10 10



        
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       
               



LUx y

x x
 

 



Again, the significant discrepancy between exact and computed solution has been obtained. It 

also evident that the reason why our calculations fail to bring acceptable results is the very 

large value of the 
( )

,

1

2 1l , which is equal 10
10

! 
 

The remedy for this problem is (partial) pivoting, which is a “nick name” for the change of 

the equations’ order. In our particular example, it works as follows 
 

ˆ ˆ, ,
10

10

1 1 1 010 1

0 10 1 11 1





       
          

      


pivoting

A b A b

 
 

Now, the solution based on LU factorization works perfectly! 
 

ˆ ˆ ˆ,
10 10

1 0 1 1 1 1

10 1 0 1 10 0 1 

     
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ˆ ˆ ˆ

ˆ

1

10

2

1

2

y0 1 0 0 0

y1 10 1 1 1

x1 1 0 1

x0 1 1 1



        
            
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        

      


LUx y

x x
 

 



Generally speaking, in the k
th

 step of the elimination we search for the equation 
( ) , { , ,.., }k 1

mE m k k 1 n   , such that the coefficients at xk in this equation has the largest 

modulus. Then we interchange equations 
( )k 1

mE 
 and 

( )k 1

kE 
. This way, the absolute values of 

all l-number do not exceed 1. The catastrophic loss of accuracy will not appear. 
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Gauss Elimination with partial pivoting
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What about the LU factorization when the pivoting is applied? 
  

To understand what is happening, we need the concept of the permutation matrix. In general, 

the permutation matrix is obtained by changing the order of rows and/or columns of the 

identity matrix I. For example: 
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What happens when a permutation matrix multiplies some other matrix A?. The following 

examples provide explanation: 
 

0 0 1 1 2 3 7 8 9

0 1 0 4 5 6 4 5 6 interchange of the rows 1 and 3

1 0 0 7 8 9 1 2 4

1 2 3 0 0 1 3 2 1

4 5 6 0 1 0 6 5 4 interchange of the collumns 1 and 3

7 8 9 1 0 0 9 8 7
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Consider now the Gauss Elimination with pivoting. Since the change of the equations’ order 

happens before the l-numbers are determined, the transformation between intermediate 

matrixes 
( )k 1

A  and 
( )k

A  can be written in the following form 
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Then 
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Another amazing property of the P and L factors is that the following equality holds 
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where 

( ) ( ) ( ) ( ) ( ) ( )... [ ] ...[ ]k n 1 k 1 k k 1 1 n 1 1     L P P L P P  

 

Moreover, the inverse matrix   
( ) ( ) ( )...

1
n 1 n 2 1


  
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L L L L   is lower-triangular.  

 



Introducing the overall permutation matrix  
( ) ( ) ( )...n 1 n 2 1 P P P P  we finally get the formula 

 

PA LU  
 

The LU factorization with pivoting can be used to solve the linear system in the manner 

similar to what we have seen before 
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Thus, the only complication is that we have to keep truck of the matrix rows reordering during 

elimination phase and then apply this reordering to the right-hand side vector (or vectors). 

 

Other applications of the LU factorization include … 

 

 

 

 

 
 



1. Evaluation of the matrix determinant  (rarely needed – mostly academic problem) 
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2. Explicit inversion of the matrix (needed very seldom, should  be avoided in general) 
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These systems are solved by the LU factorization at the overall cost proportional to n
3
. Note 

that naive application of the Gauss Elimination for each system would give a total numerical 

cost proportional to n
4
. 



Final remarks: 
 

 Other variants of the matrix factorizations exist. Some of them like QR 

factorization, Choleski factorization (exact and incomplete) are presented during 

the course “Numerical methods” (currently only in Polish). 

 The Gauss Elimination and LU factorization methods belong to the class of – so 

called – exact methods for linear algebraic systems. „Exact” means noniterative, 

i.e. these methods (at least in theory) provide the exact solution in a finite number 

of well-defined steps. For large linear systems (say 4n 10 or more) these 

methods are prohibitively expensive in both computer time and memory 

requirements). Fortunately, very large linear systems which arise in practical 

applications are most often sparse (each equation contains only a small number 

of unknowns) and they can be solved by specially design iterative methods. 

Several most popular iterative methods are presented during the course 

“Numerical methods”. 
 


