
  

 

 

 

 

LECTURE 1 

POLYNOMIAL INTERPOLATION 

 

 

              



  

 

Formulation of the interpolation problem. The Lagrange method. 

Assume the set of points {( , ), , ,..., }j jx y j 0 1 n  is given. We will refer to these points as the 

interpolation nodes. We want to find the interpolating polynomial 
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i.e., such that          ( ) , , ,...,n j jP x y j 0 1 n   

This means that the plot of the 

polynomial Pn should go through 

all the given nodes (see picture) 

Three crucial questions arise: 

1. Does such polynomial exist? 

2. If it exists, is it unique? 

3. How can we find it? 
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Let us first take the „brute force” approach.  It means that we simply derive the linear system 

for the coefficients of the interpolating polynomial, which is 

2 n 1 n
0 00 0 0 0

2 n 1 n
1 11 1 1 1

2 n 1 n
j jj j j j

2 n 1 n
n nn n n n

a y1 x x x x

a y1 x x x x

a y1 x x x x

a y1 x x x x









     
     
     
     

     
     
     
     

    

 

In matrix/vector notation, we have    Wa y       

where   , , , , ,...,k

j k jw x j k 0 1 n     are the elements of the Van der Mond matrix. 

In principle, this system can be solved numerically (i.e., by means of the Gauss Elimination). It 

can be shown that as long as all interpolation nodes are different, the Van der Mond matrix is 

nonsingular and the unique solution exists. Note that the order of the polynomial nP  is by one 

smaller than the number of the nodes. Otherwise, the interpolation problem would be either 

undetermined (infinite number of solutions exists) or overdetermined, i.e. there is no 

solution. 



  

There exist much smarter methods than the “brute force” approach. They are direct in the 

sense that they avoid solving a linear algebraic system. 

First consider the Lagrange method. The key idea is to introduce the special family of nth-

order polynomials, namely 
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The typical plots of the special 

Lagrange polynomials are depicted 

in the figure of the right. 
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Once these special polynomials are defined, the solution of the interpolation problem is 

immediate. It suffices to write 
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An alternative (and theoretically useful) way to write the polynomial Pn is also 

               
( )

( )
( ) ( )

n
n 1

n k

k 0 k n 1 k

x
P x y

x x x






 




      (exercise !) 

where the following (n+1)-order polynomial has been used 
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APPROXIMATION BY AN INTERPOLATING POLYNOMIAL 

The interpolating polynomials are often used to approximate other functions. Assume that the 

interpolating nodes are defined as  

{( , ), , ,..., }j jx y j 0 1 n         where    , , ,...,( )j j j 0 1 ny f x 
 

The key problem is what is accuracy of the approximation of the function f  by the interpolating 

polynomial Pn.  

 

We will show that the following result holds: 

Theorem: Let , ,...,0 1 nx x x  be distinct nodes and let x belongs to the domain of the given 

function 
( ) ( )n 1

xf C I , where Ix is the smallest interval containing , ,...,0 1 nx x x  and x. Then 

there exists such point xI   that the interpolation error at the point x is given by  
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Proof:     Fix  x and consider the function 
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The function g has exactly n+2 roots (zeros). Indeed, we have … 

( )
( ) ( ) ( ) , , ,...,

( )

( )
( ) ( )

( )

n
k n k n 1 k

n 1
0 0

n
n

n 1

E x
g x E x x 0 k 0 1 n

x

E x
g x E x

x












   

  ( )n 1 x  0

 

Thus, the derivative 
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and the above formula for the approximation error follows immediately. This ends the proof.  



  

For the equidistant nodes     , , ,..., , n 0
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the following estimate of the approximation error can be obtained 
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Increase of the polynomial’s order does not 

necessarily  improve the approximation!   

Consider the polynomial approximations of 

increasing order of the rational function  
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The interpolation interval is [-1,1] and the 

interpolation nodes are equidistant. The result of 

the interpolation is depicted in the following 

figure. 
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The characteristic “lobes” appear on the plots of the interpolating polynomials near the ends of 

the interpolation interval. The amplitude of these unwanted “oscillations” become larger when 

the order of interpolating polynomial increases. This is a demonstration of the Runge effect.  

 

The remedy for this problem is to use nonequidistant nodes. Even better, there exists the 

optimal choice of such nodes. For the interval [-1,1] these nodes are given as 
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i.e., they are roots of the (n+1)-order Chebyshev polynomial  
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The Chebyshev polynomials are the very important family of polynomials defined by the 

following recurrence relation 
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They are also related to trigonometric functions, since  cos (cos )kkx T x  



  

 

The crucial property of the Chebyshev polynomials is   [ , ] ( ) , , ,...kx 1 1 T x 1 k 0 1      

Hence, one gets the estimate 
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Moreover, it can be shown that with any other choice of the interpolating nodes inside [-1,1] 
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i.e., the choice of the Chebyshev nodes is optimal in this sense that it minimizes the absolute 

value of the polynomial ( )n 1 x   within the interval [-1,1]. 

As a result, we get the following estimate of the approximation error 
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Note that for larger values of n the expression in front of the (n+1)th derivative diminishes with 

increasing n faster that the analogical expression for the equidistant nodes. This means that a 

reasonable accuracy may be achieved even for the functions with quickly growing high-order 

derivatives. Still, especially “pathological” functions exist such that even the Chebyshev 

interpolation fails to provide good results. The application of the Chebyshev nodes to our test 

function yields effect as in the figure. 

 

For the general interval  [a,b], the Chebyshev 

nodes are  
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The corresponding error estimate is 
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POLYNOMIAL INTERPOLATION BY MEANS OF THE NEWTON METHOD 

In the end, we will discuss shortly an alternative (and very effective) approach to polynomial 

interpolation which is known as the Newton method.  

As usual, we define the interpolation nodes  {( , ),( , ),...,( , )}0 0 1 1 n nx y x y x y .  Next, we construct 

recursively the set of quantities called the divided differences – see formulae of the right.
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Along with the divided differences, the following polynomials are introduced 
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Finally, the interpolating polynomial  Pn  is constructed as follows.  
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The above formula is far from obvious and its proof is rather long and technical. The Reader 

should refer for the standard books on numerical methods for details.  

 

For the illustration we will consider a simple case where n = 2. 

 



  

According to the general formula, the second order interpolating polynomial can be expressed 

as 
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The calculations showing that this polynomial indeed interpolates through the given nodes go 

as follows: 
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The numerically efficient method to calculate the interpolating polynomial in the Newton’s 

form is the Horner algorithm. The pseudo code for this algorithm can be written as  
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