

LECTURE 1

POLYNOMIAL INTERPOLATION

Formulation of the interpolation problem. The Lagrange method.

Assume the set of points {(,), , ,..., }j jx y j 0 1 n is given. We will refer to these points as the

interpolation nodes. We want to find the interpolating polynomial

() ...
n

n n 1 k

n n n 1 1 0 k

k 0

P x a x a x a x a a x





     

i.e., such that () , , ,...,n j jP x y j 0 1 n 

This means that the plot of the

polynomial Pn should go through

all the given nodes (see picture)

Three crucial questions arise:

1. Does such polynomial exist?

2. If it exists, is it unique?

3. How can we find it?

x0 x1
x2 xkxk-1 xk+1 xn-1 xn

y0

y1

y2

yk-1

yk
yk+1

yn-1

yn

y

x

y=Pn(x)

Let us first take the „brute force” approach. It means that we simply derive the linear system

for the coefficients of the interpolating polynomial, which is

2 n 1 n
0 00 0 0 0

2 n 1 n
1 11 1 1 1

2 n 1 n
j jj j j j

2 n 1 n
n nn n n n

a y1 x x x x

a y1 x x x x

a y1 x x x x

a y1 x x x x









     
     
     
     

     
     
     
     

    

In matrix/vector notation, we have Wa y

where , , , , ,...,k

j k jw x j k 0 1 n  are the elements of the Van der Mond matrix.

In principle, this system can be solved numerically (i.e., by means of the Gauss Elimination). It

can be shown that as long as all interpolation nodes are different, the Van der Mond matrix is

nonsingular and the unique solution exists. Note that the order of the polynomial nP is by one

smaller than the number of the nodes. Otherwise, the interpolation problem would be either

undetermined (infinite number of solutions exists) or overdetermined, i.e. there is no

solution.

There exist much smarter methods than the “brute force” approach. They are direct in the

sense that they avoid solving a linear algebraic system.

First consider the Lagrange method. The key idea is to introduce the special family of nth-

order polynomials, namely

() ()() ()
() , , ,...,

() ()() ()

n
0 k 1 k 1 n i

k

i 0k 0 k k 1 k k 1 k n k i
i k

x x x x x x x x x x
l x k 0 1 n

x x x x x x x x x x

 

 


    
  

    


Note that ()k j jk

symbol

j k0 if
l x

1 if j k



  


Kronecker

The typical plots of the special

Lagrange polynomials are depicted

in the figure of the right.

 x0 x1
x2 xkxk-1 xk+1 xn-1 xn

y

x

y = lk(x)
1

y = lk-1(x)

Once these special polynomials are defined, the solution of the interpolation problem is

immediate. It suffices to write

() ()
n

n k k

k 0

P x y l x




Indeed, we have () () , , ,...,
n n

n j k k j k jk j

k 0 k 0

P x y l x y y j 0 1 n
 

    

An alternative (and theoretically useful) way to write the polynomial Pn is also

()

()
() ()

n
n 1

n k

k 0 k n 1 k

x
P x y

x x x






 




 (exercise !)

where the following (n+1)-order polynomial has been used

() () ()()...()
n

n 1 k 0 1 n

k 0

x x x x x x x x x 



     

APPROXIMATION BY AN INTERPOLATING POLYNOMIAL

The interpolating polynomials are often used to approximate other functions. Assume that the

interpolating nodes are defined as

{(,), , ,..., }j jx y j 0 1 n where , , ,...,()j j j 0 1 ny f x 

The key problem is what is accuracy of the approximation of the function f by the interpolating

polynomial Pn.

We will show that the following result holds:

Theorem: Let , ,...,0 1 nx x x be distinct nodes and let x belongs to the domain of the given

function
() ()n 1

xf C I , where Ix is the smallest interval containing , ,...,0 1 nx x x and x. Then

there exists such point xI  that the interpolation error at the point x is given by

()()
() () () ()

()!

n 1

n n n 1

f
E x f x P x x

n 1






  


Proof: Fix x and consider the function

()
() () () , , , ,...,

()

n
n n 1 k

n 1

E x
g t E t t x x k 0 1 n

x







   

The function g has exactly n+2 roots (zeros). Indeed, we have …

()
() () () , , ,...,

()

()
() ()

()

n
k n k n 1 k

n 1
0 0

n
n

n 1

E x
g x E x x 0 k 0 1 n

x

E x
g x E x

x












   

  ()n 1 x  0

Thus, the derivative
()n 1g 

 has one root inside Ix, say
() () ,n 1

xg 0 I    .

On the other hand, we have

!

() () (

(

() (

)

))() ()
() () () () () ()!

() ()
n

n 1
n 1

the coefficient0 since P i

n 1 n 1 n 1 n 1 n 1n n
n n 1 n

n 1 n 1
s

of the order n at x in x
is equal 1

E x E x
0 g E f P n 1

x x



     
 




    








      

and the above formula for the approximation error follows immediately. This ends the proof.

For the equidistant nodes , , ,..., , n 0
k 0

x x
x x kh k 0 1 n h

n


   

the following estimate of the approximation error can be obtained

() ()

[,]
() ! () () max | () |

() 0 n

n 1n
n 1 n 11

n 1 k n4
x x

k 0

h
x x x h n f x P x f

4 n 1 
 


 






    




Increase of the polynomial’s order does not

necessarily improve the approximation!

Consider the polynomial approximations of

increasing order of the rational function

()
2

1
f x

1 10x




The interpolation interval is [-1,1] and the

interpolation nodes are equidistant. The result of

the interpolation is depicted in the following

figure.

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

-0.8

-0.4

0

0.4

0.8

1.2

f(x)

P4(x)

P6(x)

P8(x)

P10(x)

The characteristic “lobes” appear on the plots of the interpolating polynomials near the ends of

the interpolation interval. The amplitude of these unwanted “oscillations” become larger when

the order of interpolating polynomial increases. This is a demonstration of the Runge effect.

The remedy for this problem is to use nonequidistant nodes. Even better, there exists the

optimal choice of such nodes. For the interval [-1,1] these nodes are given as

cos , , ,...,T

k

2k 1
x k 0 1 n

n 1 2

 
  

 

i.e., they are roots of the (n+1)-order Chebyshev polynomial

() , , ,...,T

n 1 kT x 0 k 0 1 n  

The Chebyshev polynomials are the very important family of polynomials defined by the

following recurrence relation

,() ()

() () () , , ,...

0 1

k 1 k k 1

TT x 1 x 1

T x 2xT x T x k 1 2 

 

  

They are also related to trigonometric functions, since cos (cos)kkx T x

The crucial property of the Chebyshev polynomials is [,] () , , ,...kx 1 1 T x 1 k 0 1    

Hence, one gets the estimate

() () ()
n n

n T T

n 1 k k n
k 0 k 0

1
T x 2 x x x x

2


 

     

Moreover, it can be shown that with any other choice of the interpolating nodes inside [-1,1]

[,]
max () , [,] , , ,...,

n

k kn
t 1 1

k 0

1
t z z 1 1 k 0 1 n

2 


    

i.e., the choice of the Chebyshev nodes is optimal in this sense that it minimizes the absolute

value of the polynomial ()n 1 x  within the interval [-1,1].

As a result, we get the following estimate of the approximation error

()

[,]
() () max | () |

()!
n 1

n n 1 1

1
f x P x f

2 n 1 


 
 



Note that for larger values of n the expression in front of the (n+1)th derivative diminishes with

increasing n faster that the analogical expression for the equidistant nodes. This means that a

reasonable accuracy may be achieved even for the functions with quickly growing high-order

derivatives. Still, especially “pathological” functions exist such that even the Chebyshev

interpolation fails to provide good results. The application of the Chebyshev nodes to our test

function yields effect as in the figure.

For the general interval [a,b], the Chebyshev

nodes are

cosT

k

b a 2k 1 a b
x

2 n 1 2 2

   
  

 

The corresponding error estimate is

()

[,]

()
() () max | () |

()!

n 1
n 1

n 2n 1
a b

b a
f x P x f

2 n 1 









 



-1.2 -0.8 -0.4 0 0.4 0.8 1.2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(x)

P4(x)

P6(x)

P8(x)

P10(x)

POLYNOMIAL INTERPOLATION BY MEANS OF THE NEWTON METHOD

In the end, we will discuss shortly an alternative (and very effective) approach to polynomial

interpolation which is known as the Newton method.

As usual, we define the interpolation nodes {(,),(,),...,(,)}0 0 1 1 n nx y x y x y . Next, we construct

recursively the set of quantities called the divided differences – see formulae of the right.

,

, ,

, ,

, ,..., , ,...,

, ,...,

,

, ,...,

, , ,....,

, , ,...,

, , ,...,

, , ,...,

k k

k 1 k k 1 k
k k 1

k 1 k k 1 k

k 1 k 2 k k 1

k k 1 k 2

k 2 k

k 1 k 2 k m k k 1 k m 1

k k 1 k m

k m k

1

0 1 n

Y y k 0 1 n

y y Y Y
Y k 0 1 n 1

x x x x

Y Y
Y k 0 1 n 2

x x

Y Y
Y k 0 1 n m

x x

Y
Y

 


 

  

 



     

 



 

 
   

 


  




  




,..., , ,...,

,
2 n 0 1 n 1

n 0

Y
m n

x x



















 

Along with the divided differences, the following polynomials are introduced

()()...() () , ,...,
k

k 0 1 k j

j 0

x x x x x x x x k 0 n 1


       

Finally, the interpolating polynomial Pn is constructed as follows.

, ,..,

, , , , , ,...,

() ()

() ()() ... ()()...()

n

n 0 0 1 k k 1

k 1

0 0 1 0 0 1 2 0 2 0 1 2 n 0 2 n 1

P x Y Y x

y Y x x Y x x x x Y x x x x x x

 





  

          



The above formula is far from obvious and its proof is rather long and technical. The Reader

should refer for the standard books on numerical methods for details.

For the illustration we will consider a simple case where n = 2.

According to the general formula, the second order interpolating polynomial can be expressed

as

, , ,() () ()()2 0 0 1 0 0 1 2 0 1P x Y Y x x Y x x x x     

The calculations showing that this polynomial indeed interpolates through the given nodes go

as follows:

,

()

() ()

2 0 0

1 0
2 1 0 0 1 1 0 0

1 0

P x y

y y
P x y Y x x y

x x




    


()1 0x x

, , ,() () ()() ()1 0

1 0

1 02 1

2 1 1 0

1

y y

2 2 0 0 1 2 0 0 1 2 2 0 2 1 0 2 0x x

y yy y

x x x x

2 0

y

P x y Y x x Y x x x x y x x

x x







 



         





()2 0x x () () ()

(

1 0 1 0

1 0 1 0

1 0

1 0

y y y y

2 1 0 2 0 2 1 2 1x x x x

y y

0 2 1 2x x

x x y x x y y x x

y y y x

 

 





        

    0 1 2x x x  ) 2y












 


The numerically efficient method to calculate the interpolating polynomial in the Newton’s

form is the Horner algorithm. The pseudo code for this algorithm can be written as

, ,...,

%

%

% () , , ,..

()

: : ! !

() (

.

)

,

k

0 1 k

Horner summation of the Newton polynomial

Vector w stores necessary divided differences

w k Y

s W n

FOR k n 1 0 1 loop runs backwar

k 0 1

ds

s s x x W k

END

RETURN s

n 



  

   

