ThermoMechanical Test

1. Files

1.1 New

1.2 Ok

2. File: Save as: Problem_Termo-mechaniczny ("mud" extension is automatic)

3. On the top Menu line:

verify Analysis dimension and type.

4. Geometry & Mesh

- 4.1 Basic Manipulation: Length Unit: Inch
- 4.2 Basic Manipulation: Geometry & Mesh

a) Add Elements:

type: node(-1,-1,0) Enter node(1,-1,0) Enter node(1,1,0) Enter node(-1,1,0) Enter

- b) Add Surfaces:
- type: point(1,-1,0) Enter point(-1,-1,0) Enter point(-1,1,0) Enter point(1,1,0) Enter

c) Ok

- 4.4 Operations: Move
 - a) Scale Factors: 4 2 1
 - b) Surfaces

- All Existing

- c) Reset
- d) Translations: 1.8 0 0
- e) Surfaces

- All Existing

- f) Ok
- 4.5 Operations: Subdivide
 - a) Elements
 - All Existing
 - b) Ok
- 4.5 Operations: Expand
 - a) translations: 0 0 0.5
 - b) repetitions: 2
 - c) Expand Elements - All Existing
 - d) Ok
- 4.6 Operations: Sweep
 - a) Remove Unused: nodes
 - b) All
 - c) Ok
- 4.7 Basic Manipulation: Renumber
 - a) All Geometry And Mesh
 - b) Ok

Analysis 3-D - Thermal / Structural -

5. Boundary conditions

- 5.1 New (Structural): Fixed Displacement
 - a) Check Displacement Y = 0
 - b) Nodes Add

- All existing

c) Ok

- 5.2 New (structural): Gravity load
 - a) Acceleration Z = -9.81
 - b) Elements Add
 - All Existing
 - c) Ok

6. Initial Conditions

6.1 New (Thermal): Temperature

- a) Temperature = 0
- b) Select TOP and BOTTOM

M Name

- c) Nodes Add
 - All Existing

d) Ok

6.2 New (structural): Velocity

- a) Velocity X: 4.905
- b) Nodes Add

- All Existing

c) Ok

7. Material Properties

- 7.1 New: Finite Stiffness region: Standard
 - a) Mass Density = 7854
 - b) Young's Modulus = 2.1e11
 - c) Poisson's Ratio = 0.3
 - d) Damping
 - Damping
 - Multiplier: 0.3

- Ok

- e) Show properties: change to Thermal
- f) Conductivity K = 60.5
- g) Specific Heat = 434
- h) Mass density 7854
- i) Elements Add

- All existing

k) Ok

	-								
	E	Soundary Cond	lition Propertie	s ^					
	Name apply1	acement	-						
	inter_uisp	Prop	erties						
	Method Enter	ed Values 💌							
	Reference Positio	Position At Ac	tivation Of BC 💌						
	Time Dependence	Time Dependence Tables 🔹							
	Displacement	x							
	Displacement	Y 0	Table						
	Rotation X	6							
	Rotation Y								
	Rotation Z								
		Ent	tities						
		Nodes A	dd Rem 27						
		Curves A	dd Rem 0						
		Surfaces A	dd Rem 0						
	Clear			ОК					
M	Materia	I Properties		×					
Name material1	Materia	rropences		-					
Type standard									
Region Type									
Finite Stiffness									
General Proper Mass Density	7854								
Design Sensitivity/	Optimization								
	Other	Properties							
Show Properties Structure	al 👻	Toperado							
Type Elastic-Plastic Isotr	opic 👻		Shell/Plane	Stress Elements					
			Update This	ckness					
Young's Modulus	2.1e+011 Tab	le							
Poisson's Ratio	0.3 Tab	le							
Viscoelasticity	Viscoplasticity	Plasticity	Cree	p					
Damage Effects	Thermal Expansion	🔲 Cure Shrinkag	je						
Damping	Forming Limit	Grain Size							
	E	Intities							
	Elements A	dd Rem 8							
		OK							
		UK							
		Material Prop	perties	×					
Na	me material1								
Тур	standard								
	Region Type								
i Fina	General Propert	Nec							
N	tass Density	7854							
ai	Design Sensitivity/	Optimization							
		Other Proper	ties						
s	how Properties Thermal								
т	ype Isotropic 💌								
		Conductivit	ty 🗍 🗆	ch taland					
	ĸ	60.5	Table	F SUD, Ankond					
		1.000							
	andfe Unt	Care	Contra 1						
S	lass Density Concert	434	Table						
E	missivity	0	Table						
E	nthalpy Of Formation	0	Table						
8	ef. Temperature	0	Table						
10	Latent Heat		Curing						
	Eler	ments Add	Rem 8						
		OK							

8. Contact

8.1 New: Meshed (Deformable) a) Elements Add - All Existing

b) Ok

- 8.2 New: Geometric
 - a) 3-D Surface Add - All Existing

b) Ok

- 8.3 Contact Tables: New
 - a) Full Default Contact: Touching
 - b) Entries 1
 - Contact Interaction: Edit
 - Friction
 - -Friction coefficient = 0.5

- Ok

- -Ok
- Ok
- c)The same steps for Entries 2
- d) Ok

9. Loadcases

9.1 New: Transient/Dynamic transient

- a) Contact
 - Contact table
 - ctable1
 - Ok

- Ok

- b) Solution Control
 - Non-Positive Definite

- Ok

- c) Convergence Testing

 Displacements
 Ok

 d) Total Loadcase Time: 2
 e) # Steps = 50
- f) Ok

10. **Jobs**

10.1 New: Thermal/Structural

- a) choose Large Strain
- b) in Available Select: lcase1
 - b) Analysis Options
 - Lumped Mass & Capacity

- Ok

- c) Contact control
 - Friction Model: Arctangent(Coulomb)

M	Loadcase F	Properties	1	0
Name	lcase1			
Туре	Thermal/Structural			
	trans/dyn_trans			
Loads		i j		
Gaps				
Contac	t			
Global F	Remeshing			
N	CCT Crack Propagation	- Ú,		
Crade I	nitiators			
	Solution Control			
Structural	 Convergence Testir 	ng		
	Numerical Preferences			
Total Loado	ase Time 2			
Stepping Pr	rocedure			
Fixed	Constant Time Step	0.04	# Steps	50
Adaptive	O Multi-Criteria		Paran	eters
	O Temperature		Paran	eters
	Loadcase Results			
Deactiv	vation / NC Machining			
Input F	ile Text 🛛 🔲 Include File			
1	Пitle			

Name			
	job1		
ype	Thermal/Struc	tural	
		Loadcases	
Selected	Clear		
	kase1	Thermal/Structural	trans/dyn_trans
Available			
🗖 Initial Load	ds	0	Analysis Options
Initial Load	ls	Cyclc Symmetry	Analysis Options Job Results
Tnitial Load	ds	Cycle Symmetry	Analysis Options Job Results Job Parameters
Tnitial Load	da t Control daptivity	Cyclc Symmetry	Analysis Options Job Results Job Parameters Analysis Dimension
Contac Mesh A Active	ls t Control idaptivity e Cracks	Cyclc Symmetry	Analysis Options Job Results Job Parameters Analysis Demaion 3-0
Contac Mesh A Active	ls t Control daptivity c Cracks ators	Cyclic Symmetry	Analysis Options Job Results Job Parameters Analysis Dimension 3-0
Contac Contac Medit A Active Celocimus Deactivati	ds t Control daptivity c Crackis etors on DPMIG Table Table Table	Cycle Symmetry	Analysis Options Job Results Job Parsameters Analysis Dimension 3-D Check
Contac Contac Mesh A Active Concorno Deactivato Input File	ds t Control daptivity + Cracks etors on DMIG Text Inc	Cyclic Symmetry Cyclic Symmetry Model Sections Out	Analysis Options Job Results Job Parameters Analysis Dimension 3-D Check Run
Contac Contac Mesh A Active Cock Inn Desctivab I Input File Title	ts t Control daptivity etons etons on DMLG Text Inc	Cyclic Symmetry Code Sections Out	Analysis Options Job Results Job Parameters Analysis Dimension 3-D Check Run

lame 🗔	tabla	i.			View	Mode	Entry M	latrix	-		
100 C	abic	+					Entri	ioc			
			Show Vis	ible Bodie	es Only		LIN	IE5			
				Die Douie	S Only				Second		
First		Bod	y Name		Body T	ype		1	2		
	1	cboo	iy1		Meshe	d (Defo	rmable)	Т	т		
2		cbody2			Geometric						
Shown	Entr	ies	Activate	Deact	ivate	Remo	ove	Dete	ction	Remove Inactive	
	4	-	anii e.	I Defende	Contrat	C Bearing	autor i	1200	8		

- Relative Velocity Threshold = 0.1

- Advanced Contact Control

```
- Separation Force = 1e11
```

- Ok

- Ok

d) Job Results

- Select Equivalent Von Misses Stress
- Temperature

- Ok

- e) Job parameters
 - Conversion Factor 1e3

- Ok

- f) Run
 - Submit (1)
 - Monitor
 - (After execution **Open Post File**) or:
- g) Ok, Ok and File: (Result) Open Default

10.2 Save

11. Results

11.1 Model Plot Results

- a) Scalar Plot: Style: Contour Bands
 - b) Scalar: temperature
 - c) Skip to 50 (i.e.: show the last increment) or "play the movie"
- d) Ok

11.2 History Plot

- a) Set location (select middle bottom node see above and accept, e.g. RMB)
- b) All Incs
- c) Add Curves
 - on X axis: Data Carrier Type Global= Variable Time
 - on Y axis: Data Carrier Type Location (Node)
 - from the list below select node (here it was Node 22)
 - Variable Velocity X
 - Add Curve, Fit

	X-Axis				
Data Carrier Type	Global	•			
Variable Time					Reset
	Y-Axis				- 1994
Data Carrier Type	Location (Node / Sample Point)	•	Mode	Single	-
Location Node 22					Reset
Variable Velocity X					Reset
	Add Curve				

Next curve, like above, On X axis: Time On Y axis: Acceleration X Add Curve, Fit

New curve, like above (but clear curves, as the Y -scale is different) On X axis: Time

Figure 4.2-11 Velocity, Acceleration and Temperature History of Leading Node

Notice that the effect of friction was not 100% since the block should come to a stop at 1 sec. This was due to the ever slipping friction model. Rigid body dynamics gives:

$$\ddot{u} = -\mu g$$
; $\dot{u} = -\mu g t + \dot{u}_0$; $u = -\mu g t^2 + \dot{u}_0 t + u_0$

where the initial velocity was selected as $\dot{u}_0 = \mu g t_s$. Where t_s is the stopping time or 1 second.

Also from the friction heating, the friction force moves through a distance and this mechanical energy is converted to thermal energy. This thermal energy is input to the heat transfer portion of the solution. Equating the conversion factor times the kinetic energy and accounting that for rigid contact only half of the frictional heating is added to the block, the average rise in temperature for a block that comes to rest from an initial velocity of \dot{u}_0 , becomes:

$$\Delta T = \frac{1}{4} conv_{factor} \left(\frac{\dot{u_0}^2}{c_p} \right)$$

In this case, the rise in temperature is 13.86 K. Why is the block hotter at the leading bottom edge? What would you do to improve the results?

How does this compare with the Marc predictions? To answer this, we can close the post file and add another load case that is 1e6 seconds long allowing the block to come to thermal equilibrium, namely uniform temperature.